Specific calcineurin isoforms are involved in Drosophila toll immune signaling.
نویسندگان
چکیده
Because excessive or inadequate responses can be detrimental, immune responses to infection require appropriate regulation. Networks of signaling pathways establish versatility of immune responses. Drosophila melanogaster is a powerful model organism for dissecting conserved innate immune responses to infection. For example, the Toll pathway, which promotes activation of NF-κB transcription factors Dorsal/Dorsal-related immune factor (Dif), was first identified in Drosophila. Together with the IMD pathway, acting upstream of NF-κB transcription factor Relish, these pathways constitute a central immune signaling network. Inputs in these pathways contribute to specific and appropriate responses to microbial insults. Relish activity during infection is modulated by Ca(2+)-dependent serine/threonine phosphatase calcineurin, an important target of immunosuppressants in transplantation biology. Only one of the three Drosophila calcineurin isoforms, calcineurin A1, acts on Relish during infection. However, it is not known whether there is a role for calcineurin in Dorsal/Dif immune signaling. In this article, we demonstrate involvement of specific calcineurin isoforms, protein phosphatase at 14D (Pp2B-14D)/calcineurin A at 14F (CanA-14F), in Toll-mediated immune signaling. These isoforms do not affect IMD signaling. In cell culture, pharmacological inhibition of calcineurin or RNA interference against homologous calcineurin isoforms Pp2B-14D/CanA-14F, but not against isoform calcineurin A1, decreased Toll-dependent Dorsal/Dif activity. A Pp2B-14D gain-of-function transgene promoted Dorsal nuclear translocation and Dorsal/Dif activity. In vivo, Pp2B-14D/CanA-14F RNA interference attenuated the Dorsal/Dif-dependent response to infection without affecting the Relish-dependent response. Altogether, these data identify a novel input, calcineurin, in Toll immune signaling and demonstrate involvement of specific calcineurin isoforms in Drosophila NF-κB signaling.
منابع مشابه
P-184: The Role of Cell Surface Toll Like Receptors in Endometriosis
Background: Toll like receptors (TLRs) are a major family of innate immune systems which recognize specific pathogen associated molecular patterns (PAMPS)in bacterial, fungi, virus and parasites. Human TLRs comprise a large family of 10 different type proteins that are expressed on various immune cells. Among these receptors, TLR1, 2, 4, 5, 6 and 10 were expressed on the cell surface. TLR2 form...
متن کاملEvaluation of Soluble Toll-Like Receptors 2, 4, 9 and Their Damps Signaling Molecules (HMGB1 & HSP70) in Breast Cancer Patients of Basrah Province
Introduction: Toll-Like Receptors (TLRs) are members of pattern recognition receptors that recognize various molecules, including pathogen-associated molecular patterns and dead-associated molecular patterns. These receptors are expressed by immune, non-immune, and tumor cells. Some TLRs are implicated in tumor progression, while others are involved in tumor suppression. Our study aimed to eval...
متن کاملToll and Toll-like receptors in Drosophila.
The Drosophila Toll receptor controls the immune response to Gram-positive bacteria and fungi by activating a signalling pathway partially conserved throughout evolution. The Drosophila genome encodes eight additional Toll-related receptors, most of which appear to carry out developmental rather than immune functions. One exception may be Toll-9, which shares structural and functional similarit...
متن کاملP-172: Intracellular Toll Like Receptors Expression in Endometriosis
Background: Endometriosis is a complex disease that profoundly affects the quality of life in many women. This disease affects roughly one in ten women of reproductive age. Endometriosis induces a variable amount of inflammatory reaction in pelvic environment. An active immune system needs to recognize these inflammatory agents. Rapid innate immune system defenses against infections involve the...
متن کاملIn vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila.
The dorsoventral regulatory gene pathway (spätzle/Toll/cactus) controls the expression of several antimicrobial genes during the immune response of Drosophila. This regulatory cascade shows striking similarities with the cytokine-induced activation cascade of NF-kappaB during the inflammatory response in mammals. Here, we have studied the regulation of the IkappaB homologue Cactus in the fat bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 194 1 شماره
صفحات -
تاریخ انتشار 2015